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1.  Introduction 
 

Numerical weather prediction (NWP) models possess the property that two or more 

slightly different initial states, in general, over time develop into states no more similar 

than two or more randomly observed states of the atmosphere.  This inherent error 

growth is a consequence of the nonlinearity and instability of the atmospheric dynamics 

(Leith 1978).  The finite errors in initial conditions and inevitable model deficiencies 

imply a limited forecast range to skillful atmospheric predictions.  Errors in initialization, 

errors and simplifications in parameterization schemes, errors due to model formulation, 

and errors in lateral boundary conditions for limited area models all contribute to the 

overall errors in NWP forecasts. 

 

Singular vectors (SVs) are one tool for studying numerical predictability.  They have 

been widely used in three different ways (Palmer et al. 1998).  First, following the work 

of Orr (1907) in studying the transition to turbulence in Couette flow, SVs have been 

applied in geophysical-fluid-dynamics studies to explain particular phenomena, such as 

extratropical cyclogenesis (e.g., Farrell 1982) and El Nino (Penland and Sardeshmukh 

1995). 

 

Second, SVs of the linearized equations of motion have been employed to study 

questions of the atmosphere-ocean system predictability (Palmer 1996), especially to 

estimate the evolution of initial errors during the course of a forecast.  There have been a 

number of studies related to the SVs approach in the atmospheric predictability field for 

both post-mortem cases and operational forecasts.  For example, singular vectors were 

able to explain the dependence of weather forecast errors on the sign of the Pacific-North 

American mode (Molteni and Palmer 1993); to capture a major transition to blocking 

(Mureau et al. 1993); and to demonstrate the upscale energy cascade associated with 
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extratropical predictability (e.g., Charney and Shukla 1981). Leutbecher (2003) estimated 

changes of forecast error produced by a change of the observation network during an 

assimilation cycle by performing the required calculations in a subspace of a small 

number of leading SVs.  Ehrendorfer and Tribbia (1997) concluded that SVs, constructed 

using covariance information valid at the initial time in a tangent-linear framework, 

represented the most efficient approach for predicting the forecast error-covariance 

matrix valid for the end of the optimization interval. 

 

A third potential use of SVs is considered in defining a strategy for targeting adaptive 

observations of the atmosphere or the oceans.  In such a strategy, observations would be 

made in particularly flow-dependent “sensitive” regions determined by the location of the 

singular vectors at initial time (Palmer et al. 1998). 

 

Since Lorenz (1965) first considered singular vectors in a meteorological context in a 

study of the predictability of a 28-variable atmospheric model and concluded that errors 

tend to project along non-random directions in phase space, the dynamics of short-term 

error growth have been best understood in terms of SVs.  At larger synoptic scales, at 

which most of error growth occurs, their behaviors are fairly linear.  Rabier et al. (1996) 

showed that the sensitivity of day-2 forecast error to perturbations in the initial state 

projects well into the space of dominant SVs.  Based on the understanding of SV’s direct 

relevance to the directions of most rapid error growth in NWP models, localized SVs 

have been used to routinely construct initial perturbations for the ensemble prediction 

system in European Centre for Medium-Range Weather Forecasts (ECMWF) (Palmer 

1993, Molteni and Palmer 1993, Ehrendorfer and Errico 1995). 

 

In this review, I will focus on singular-vector application in ensemble forecasts 

(belonging to predictability studies of the atmosphere), discuss why SVs can explain 

directions of error growth in the tangent-linear model frame, how SVs are used as the 
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basis of initial perturbations for operational medium-range ensemble forecasting at 

ECMWF, and some studies on short-range ensemble prediction system constructed on 

optimal SVs. 

 

The organization of this essay is as follows.  Section 2 gives a review of ensemble 

forecasting methods in NWP models.  Section 3 describes the phase-space evolution of 

perturbations. Section 4 contains some issues on SV methodology, such as SV 

formulation, the relationship between SVs and error growth in the phase space, the choice 

of norms, the nonmodality of SVs, and the comparison of SVs with Lyapunov vectors.  

SV application on ensemble forecasts is discussed in section 5.  A summary is presented 

in section 6.  

 

2.  Review of ensemble forecasting methods 
 

2.1  Early studies 

 

a.  Stochastic-dynamic forecasting 

In 1969, Epstein introduced the idea of stochastic-dynamic forecasting, which is the first 

forecasting method to explicitly acknowledge the uncertainty of atmospheric-model 

predictions.  By deriving a continuity equation for the probability density of the model 

solution of a dynamical model with some assumptions, the first and second moments of 

the probability distribution (expected means and covariances) could be obtained.  

Because this approach requires a huge number of forecast equations for modern NWP 

models, it is completely unfeasible. 

 

b.  Monte Carlo forecasting 

The Monte Carlo method is the first approach to efficiently construct ensemble forecasts,  
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which are potentially as useful as stochastic forecasts, but are much cheaper.  Leith 

(1974) concluded that an individual deterministic forecast for long lead times has twice 

the error covariance of a climatological forecast.  He also built a regressed forecast, based 

on the least-squared error, to eventually temper the forecast towards climatology.  Instead 

of regression, which involves considerable work to estimate the matrix of regression 

coefficients, he pointed out that adequate accuracy would be attained for the best estimate 

of the forecast with ensemble member sizes as small as 8, for members chosen randomly 

that all are equally likely.  He also thought that the estimation of forecast errors might 

require a larger number of ensemble members.  Finally Leith showed that averaging a 

Monte Carlo ensemble of forecasts approximates the tempering of the forecasts towards 

climatology, without the need to perform regression. 

 

In the late 1980’s, Errico and Baumhefner (1987), Tribbia and Baumhefner (1988), and 

Mullen and Baumhefner (1989) followed Leith to produce random initial perturbations.  

These approximate the actual two-dimensional error of the horizontal fields as estimated 

by Daley and Mayer (1986), on limited-area domains by using a variation of the spectra 

method.  

 

c.  Lagged-average forecasting 

In 1983, lagged-average forecasting (LAF) was created as an alternative to the Monte 

Carlo forecasting by Hoffman and Kalnay.  This approach takes advantage of the fact that 

operational forecast centers produce new forecast runs every 

€ 

τ  hours. The way to 

construct ensemble members is to combine the forecasts initialized at the current initial 

time, t=0, as well as at previous times, t = -

€ 

τ , -2

€ 

τ ,…,-(N-1)

€ 

τ  together at the same 

forecast valid time, so that the initial perturbations are generated automatically from the 

forecast errors.  By comparing the lagged-average forecasting and the Monte Carlo 

forecasting methods within a simulation system, they found that LAF predicted forecast 

skill much better, with the correlation between predicted and observed time of crossing 
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the 50% skill level being 0.68 for Monte Carlo forecasting and 0.79 for lagged-average 

forecasting, even though LAF ensemble average forecast was only slightly better than the 

Monte Carlo forecast (Kalnay 2003).  LAF initial perturbations were not chosen 

randomly like in Monte Carlo forecasting, but contained dynamical influences.  Another 

advantage is that the initial conditions are computed cost free, because sequential 

forecasts required are already generated operationally.  Toth and Kalnay (1993) pointed 

out that the disadvantage of LAF is that the forecast error magnitude is not the same for 

each ensemble member because of the different forecast lead times.  

 

2.2  Operational ensemble forecasting methods 

 

The two leading operational centers in the world, the European Centre for Medium-

Range Weather Forecasts (ECMWF) and the National Centers for Environmental 

Prediction (NCEP), use the singular-vector and breeding methods to build the initial 

perturbations for medium-range (5-15 day) ensemble forecasting.  At the Canadian 

Meteorological Center (CMC), ensemble forecasts are performed by introducing initial-

condition and model errors. 

 

a.  Breeding method 

In 1993, Toth and Kalnay first introduced the breeding method into ensemble forecasting.  

A random initial perturbation is introduced into a breeding cycle with a given initial size, 

then a short-range control forecast and a short-range perturbed forecast are obtained by 

integrating from the control and from the perturbed initial conditions.  The difference 

between these two forecasts is scaled down so that it has the same amplitude as the initial 

perturbation, and then is added to the corresponding new analysis state to create a new 

perturbation (denoted bred vectors).  Beyond an initial transient period of 3-4 days after 

random perturbations were introduced, the perturbations acquired large growth rates, 

faster than for Monte Carlo forecasting or lagged-average forecasting.  Toth and Kalnay 
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argued that the differences represent the fastest growing forecast errors, which are only 

partially removed in the analysis cycle by the addition of new observations. 

 

b.  Singular vectors 

The singular-vector approach was based on the linear error-propagator concepts 

developed by Lorenz (1965).  Researchers at ECMWF used the forward tangent version 

and the adjoint tangent version of the Integrated Forecasting System, a medium range 

forecast model, to catch the important analysis errors (Buizza, 1997).  Firstly, they 

defined an error-propagator matrix that was determined by the solution of equations in a 

linearized simplification of the NWP model, where an error term was already added.  

Secondly, ECMWF used the total energy norm as the initial norm.  By calculating the 

norm of the state vector, they got the eigenvalues of the propagator matrix squared 

(singular vectors), which identify directions of the greatest error growth.  Finally, they 

applied the adjoint of the linear model to project the errors back onto the initial state to 

generate perturbations for an ensemble forecast.  Similar to the breeding method, the SV 

approach constitutes its initial perturbations based on the evolving underlying 

atmospheric flow rather than random errors. 

 

c.  Ensembles based on multiple data assimilation 

By running an ensemble of data-assimilation systems, Houtekamer et al. (1996) created 

the initial conditions for an ensemble forecasting system.  The errors were randomly 

added to the observations in different data-assimilation systems, and also different 

physical-parameterization schemes of the model were included in different ensembles.  

This ensemble approach is related to the breeding method and it is more general than it.  

Hamill et al. (2000) have shown for the quasi-geostrophic system that the multiple data 

assimilation ensemble system performs better than the singular vector or breeding 

approaches. 
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d.  Multisystem ensemble approach 

Most of the ensemble methods above assume a “perfect model”, and focus only on the 

statistical uncertainty in the initial conditions.  Recently, perturbations to the models have 

been introduced in ensemble forecasting by varying the model parameterizations of 

subgrid-scale physical processes (Stensrud et al. 1998).  It is concluded that an ensemble 

average of operational global forecasts from different operational centers is much more 

skilful than the best individual forecast (Fritsch et al., 2000).  In mesoscale short-range 

ensemble forecasting with perturbations in the subgrid-scale “physics”, ensemble skills 

are improved more dramatically than in global models, since the higher resolution may 

allow a faster response from growing modes driven by convective instability (Hou et al., 

2001).  Krishnamurti et al. (1999) have shown that the ensemble skill is significantly 

improved in a multisystem with correction of the systematic errors by regression. 

 

In the meantime, ensemble forecasts have been used to improve data assimilation. This 

technique is called the ensemble Kalman Filter (EnKF), and is a special case of a linear 

filter.  An estimate of the forecast error covariance can be obtained from an ensemble of 

data-assimilation systems. 

 

3.  The forecast probability density function 
 

Edward Lorenz (1963) discovered the fundamental theorem of predictability.  This 

theorem says that unstable systems have a finite limit of predictability, and conversely, 

stable systems are infinitely predictable.  Lorenz demonstrated that the atmosphere is a 

chaotic dynamic system with instability and even if you could create a perfect model, 

predictability is limited to about two weeks by the sensitivity to the imprecise initial 

conditions.  This explained the primary reason for the limitations of deterministic NWP, 

which by this time in its development was meeting with some success. 
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One way to deal with the prediction problem of forecast uncertainty is with a probability 

density function (PDF).  By looking at the time-evolution of the forecast-error PDF in an 

unstable system, we are able to understand how the initial uncertainty develops and how 

this system finally loses its predictability (e.g., Palmer 1996, Kalnay 2003). 

 

Fig. 1 shows a schematic illustration of the phase-space evolution of the PDF of analysis 

error throughout the entire forecast range.  We assume that the distribution of the PDF is 

normal along each phase-space direction at initial time (Fig. 1 (a)), namely the PDF is 

isotropic.  In the early part of the forecast, error growth is governed by linear dynamics.  

During this period an initially spherical isopleth of the PDF will evolve to bound a m-

dimensional ellipsoidal volume (Fig. 1 (b)), where m is the dimension of phase space 

(O(107) for the ECMWF operational forecast model).  The major axis of the ellipsoid 

corresponds to a phase-space direction that defines the dominant finite-time instability of 

that part of phase space (relative to the analysis error covariance metric).  The small 

arrow shown in Fig. 1 (b) points along the major axis of the ellipsoid.  It can be thought 

of as evolving from the small arrow shown in Fig. 1 (a).  The small arrow in Fig. 1 (a) is 

not parallel to the one in (b).  This illustrates the non-modal nature of linear perturbation 

growth. 

 

The growth of the PDF between Fig. 1 (b) and (c) can be described as a nonlinear 

evolution of the PDF.  In Fig.1 (c) the PDF has deformed from its ellipsoidal shape.  The 

nonlinear deformation will cause the PDF to evolve away from a normal distribution.  Fig. 

1 (d) schematically describes the situation where the PDF has evolved to cover the entire 

attractor, so that all predictability has been lost.  That means we only know that each 

original perturbation is within the climatology of possible solutions, but we don’t know 

where, or even in which region of the “attractor” it may be (Kalnay 2003). 
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In practice, for NWP, there was evidence that errors of about one standard deviation of 

the analysis error PDF evolve linearly for 2-3 days, and that the ‘weakly nonlinear’ 

timescale lasts until about day 7 of the forecast (Hartmann et al. 1995).  More recent 

evidence suggests that the strongly nonlinear growth phase might start sooner, after 2 or 3 

days. 

 

4.  Singular vector methodology 
 

a.  SVs as a representation of directions of error growth  

Singular vectors arise when searching for the perturbation that, when added to a given 

basic state, will achieve maximum growth over a specified time interval.  It was noticed 

that singular vectors have norm-dependent structures (e.g., Palmer 1998). 

 

A nonlinear system can be written as a set of n coupled ordinary differential equations: 

                    

€ 

dX

dt
= F(X)     

€ 

X = (x
1
,x

2
, ... ,x

n
)      

€ 

F = (F
1
,F

2
, ... ,F

n
)          (1) 

After choosing a finite-difference scheme, the above nonlinear equations become a set of 

difference equations: 

                       )]([)( 0tXMtX =                                                                         (2) 

where M is the time integration of the numerical scheme from the initial condition t0 to 

time t.  It is shown that the numerical solution of a dynamic system is decided only by its 

initial value once a time-difference scheme is chosen for (1). 

 

Let us consider a small perturbation y of the state vector X.  For sufficiently short time 

intervals, the linear evolution of the perturbation y will be given by 

                       

€ 

dy

dt
= Jy                                                                                         (3) 
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where 

€ 

J = ∂F /∂X is the Jacobian of F.   

After adding a small perturbation y(t0) to (2), and using Taylor series, we have: 

                       

€ 

M[X(t
0
) + y(t

0
)] = M[X(t

0
)] + ∂M

∂X
y(t

0
) +O[y(t

0
)

2
]

                          = X(t) + y(t) +O[y(t
0
)

2
]

                 (4) 

Let 

€ 

L(t
0
,t) = ∂M

∂X
, we can get: 

                       

€ 

y(t) = L(t
0
,t)y(t

0
)                                                                       (5) 

 

In fact, (5) is the integral form of (3).  The operator 

€ 

L(t
0
,t)  is known as the propagator of 

the forward tangent linear model.  It propagates an initial perturbation at initial time 

€ 

t
0
 

into the final perturbation at time 

€ 

t .  

€ 

L(t
0
,t)  depends on the basic trajectory X(t) since it 

is linearized over the flow from

€ 

t
0
 to t , but it does not depend on the perturbation y.  If 

y(t0) is the typical error in the initial conditions for a weather forecast, then (3) and (5) 

hold for approximately 2-3 days of integration time. 

 

Consider further a scalar, positive-semidefinite quantity 

€ 

˜ J  defined as 

                       

€ 

˜ J (y(t)) = y(t)
T

y(t)                                                                     (6) 

Substitution of (5) into (6) leads to an expression of 

€ 

˜ J  in terms of 

€ 

y(t
0
), to be denoted 

€ 

ˆ J , 

and allows us to state in the following way the maximization problem, leading to the 

definition of the SVs (e.g., Ehrendorfer and Errico 1995).  Maximize 

                       

€ 

ˆ J (y(t
0
)) = (Ly(t

0
))

T
(Ly(t

0
))                                                        (7) 

subject to the constraint 

                       

€ 

y(t
0
)
T
y(t

0
) =1                                                                            (8) 

 

Note that (7) is chosen in such a way that (7) reduces to (8) for the choice 

€ 

L = I , which 

corresponds to the case that no time evolution is considered (I denotes the identity 

operator).  In other words, 

€ 

ˆ J  is restricted to unity initially. 
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It can be seen, by introducing a Lagrangian and setting its derivatives equal to zero, that 

the solution to this problem is given by the solution of the eigenproblem 

                         

€ 

(L
*
L)v

i
= σ

i

2
v
i

                    with    v
i

T
v
i
=1

                                                        (9) 

where 

€ 

L
*  is the adjoint of 

€ 

L  (see more details in Kalnay 2003).  If L is represented in 

matrix form, then 

€ 

L
*  is just the matrix transpose of 

€ 

L .  The vectors vi are the eigenvectors 

of the matrix L*L, 

€ 

σ
i

2 are the eigenvalues. 

 

Since 

€ 

L
*
L = (L*L)T , the operator 

€ 

L
*
L is a symmetric and normal matrix. We can choose 

its eigenvectors to constitute an orthonormal basis in the tangent space of linear 

perturbations, with real eigenvalues 

€ 

σ
i

2 ≥ 0 . 

 

At the end of the interval of optimization, these eigenvectors evolve to 

€ 

u
i
 which in turn 

satisfy the eigenvector equation 

                         

€ 

(LL
*
)u

i
= σ

i

2
u
i
                                                                             (10) 

Also                 

€ 

u
i
= Lv

i
                                                                                       (11) 

Therefore         

€ 

u
i

T

u
i
= (Lv

i
)
T
Lv

i
= v

i

T
L
T
Lv

i
= v

i

Tσ
i

2
v
i
= σ

i

2                                  (12) 

 

Due to the terminology of linear algebra, the 

€ 

σ
i
, ranked in terms of magnitude, are called 

the singular values of the operator L, and the vectors 

€ 

v
i
 and 

€ 

u
i
 are called the right 

singular vectors of L and the left singular vectors of L, respectively. 

 

Let 

€ 

y(t
0
) = vi  in (7) with 

€ 

v
i
 satisfying (9), we have 

                   

€ 

ˆ J (y(t
0
) = vi) = σ i

2
vi

T
vi = σ i

2                                                          (13) 
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Since initially 

€ 

ˆ J  is restricted to unity, the eigenvalues 

€ 

σ
i

2 corresponding to individual 

SVs indicate by how much the value of 

€ 

ˆ J  increases (or decreases) from t0 to t.  Any 

vector can be written as a linear combination of singular vectors as follows 

                       

€ 

y(t
0
) = y

0
,vi

i=1

n

∑ vi                                                                           (14) 

                       

€ 

y(t) = yt ,ui
i=1

n

∑ ui                                                                            (15) 

where 

€ 

x,y  is the inner product of two vectors x and y.  After using (14) and (11), we get 

                       

€ 

y(t) = L(t
0
,t)y(t

0
) = y

0
,vi

i=1

n

∑ ui                                                      (16) 

Now we take the inner product of (16) and obtain 

                      

€ 

y(t),ui = σ i y(t0),vi                                                                      (17) 

This indicates that by applying the tangent linear model L each initial vector vi 

component will be stretched by an amount equal to the singular value 

€ 

σ
i
 (or contracted if 

€ 

σ
i
<1), and the direction will be rotated to that of the evolved vector ui. 

 

If we use the inner product of a vector with itself to define the norm of this vector, the 

norm of small error y at initial time can be calculated by 

                

€ 

y(t
0
)
2 = y(t

0
),y(t

0
) =1                                                                (18) 

And the norm at optimization time is given by 

                      

€ 

y(t)
2 = y(t),y(t) = L

*
Ly(t

0
),y(t

0
)                                              (19) 

Based on the discussion above, we know that any 

€ 

y(t)

y(t
0
)

 can be written as a linear 

combination of the eigenvectors ui and vi so that we have 

                      

€ 

y( t0 )≠0
max

y(t)

y(t
0
)

 

 
 

 

 
 = σ

1
                                                                         (20) 
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It implies that maximum error growth rate over the time interval

€ 

t − t
0
 is associated with 

the dominant singular vectors vi and ui at initial time and at optimization time, 

respectively.  Similarly, applying L* is like running the adjoint model backward, from t1 

to t0.  If we apply the adjoint model to isotropic perturbations with size 1, they also get 

stretched or contracted by the ratio of 

€ 

σ
i
 , and rotated into the directions of the vi  (e.g., 

Palmer 1996, Kalnay 2003). 

 

Following the discussion above, we know that a set of initial perturbations on an isotropic 

sphere will evolve into an ellipsoid.  The ui define the directions of the axes of the 

forecast PDF ellipsoid, with u1 defining the major axis, u2 the second major axis, and so 

on.  The directions at initial time that evolve into these axes are given by v1 , v2 

respectively. 

 

For large NWP models (e.g., O(104) or more),  the eigenvalue problem (equation (9) and 

equation (10)) cannot be solved directly since it is too time consuming.  Instead, iterative 

techniques provide an alternative possibility if the adjoint propagator has been coded.  

ECMWF uses either the Lanczos algorithm or the Jacobi-Davidson algorithm to estimate 

singular vectors (e.g., Strang 1986, Buizza and Palmer 1995, Sleijpen and van der Vorst 

1995, Barkmeijer et al. 1998). 

 

b. The choice of norms  

Singular vectors are very sensitive to the choice of norms.  We can define a norm using a 

weight matrix W applied to y at the initial time so that the size of initial perturbation is set 

to 1.  In the meantime, we use a different norm to define the size of the perturbation to be 

maximized at the final time, for example the final norm could be a projection operation 

operator P.  After performing a maximization problem, we have the eigenvalue problem 

as follows 
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€ 

(W
−1

)
T

L
T
P

T
PLW

−1 ˆ y (t
0
) = λˆ y (t

0
)                                            (21) 

subject to the constraint 

                        

€ 

ˆ y (t
0
) ˆ y (t

0
) =1                                                                           (22) 

where, 

€ 

ˆ y (t
0
) = Wy(t

0
)  

 

Palmer et al. (1998) tested different matrices generated by energy, enstrophy, and 

streamfunction squared norms at initial time.  They noticed that the use of different initial 

norms resulted in extremely different initial singular vectors.  From two independent sets 

of calculations based on analyses, and short-range forecast data, it was concluded that of 

these three choices, energy is the most appropriate metric for the predictability problem. 

The energy metric is a reasonable first-order estimate of the analysis-error covariance 

metric.  Enstrophy and streamfunction were ruled out as suitable metrics since they could 

not present some consistency between singular vector and analysis error structure. 

 

Enrendorfer and Tribbia (1997) showed that the initial SVs, constructed with the 

analysis-error covariance matrix (AECM), evolved into the eigenvectors of the forecast 

error-covariance matrix.  This implies that SVs are optimal in describing the forecast 

error at the end of the optimization period.  However, in realistic contexts, knowledge 

about AECM (or, more precisely, the positive root of AECM) may be inaccurate, thus 

limiting the applicability of the SV method in these situations.  They thought that, with an 

operational data-assimilation system, this approach should be available since any initial 

misspecification in AECM would gradually be removed through accumulating dynamical 

and observational information. 

 

The second derivative, called Hessian, of the variational analysis cost function (the sum 

of background and observation cost functions) can be proved to be equal to the inverse of 

the AECM (Fisher and Courtier 1995).  Hence, in terms of the Hessian, the SV 
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computation becomes equivalent to a generalized eigenvector equation (e.g., Palmer et al. 

1998, Barkmeijer et al. 1999).  Currently the Hessian SVs have been referred to as the 

second choice in ECMWF ensemble-prediction system.  Barkmeijer et al. (1998) found 

that the use of the analysis-error covariance as the initial norm, instead of the energy 

norm, resulted in improved results. 

 

For instance, it is possible to set the state vector to zero outside a prescribed area at 

optimization time, by using a projection operator, and only optimizing energy inside the 

geographical area.  Buizza (1994) found that the ensemble contained perturbations along 

vectors that would not have been otherwise perturbed because they were ranked too low.  

The ensemble spread over the European verification area was increased while 

perturbations outside the interest area were discarded.  At present scientists at ECWMF 

are using different projection operators in their operational medium-range ensemble 

systems. 

 

In order to study the upscale energy transfer, Palmer (1994) defined a spectral projection 

operator 

€ 

P
n1 ,n2[ ]  as follows 

       

€ 

P
n1 ,n2[ ] xn = x

n
   if n ∈ n

1
,n

2[ ]
P

n1 ,n2[ ] xn = 0     otherwise
                                                                (23) 

Here 

€ 

n
1
,n

2[ ]  denotes the total wavenumber interval 

€ 

n
1

≤ n ≤ n
2
, and xn is the wavenumber 

n component of the spherical harmonic expansion of the state vector.  This projection 

operator can be applied to study SVs whose energy is optimized to a specific 

wavenumber interval (representing the scale). 

 

      c.  The nonmodality of SVs 
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In reality, the linear-evolution operators are never normal ( L*L ≠ LL* ) because of 

vertical and horizontal shear (e.g., Farrell and Ioannou 1996).  That means these 

eigenvectors of the operator L or adjoint L* are not normal. 

 

For indefinitely long optimization time, the dominant SVs, at initial time and 

optimization time, are determined by the first adjoint “eigenmode” and the first 

“eigenmode” itself, respectively.  For finite optimization time, the dominant SVs no 

longer project onto individual “eigenmodes” or their adjoint “eigenmodes” (see Palmer 

1996 for details).  They may possess very different properties than exponentially-

growing-shape-preserving normal-mode solutions to linear-perturbation equations (e.g., 

Farrell 1988). 

 

The essential nonmodality of SV evolution was discussed by Buizza and Palmer (1995), 

with emphasis on the upscale cascade of energy from subcyclone to cyclone scale, and 

vertical propagation of energy from the baroclinic steering-level to the upper-troposphere 

jet level.  Non-mode growth of perturbation, represented through SVs, is faster than 

exponential, even if no unstable normal modes are present (e.g., Farrell and Ioannou 

1993). 

 

d.  Relationship between SVs and Lyapunov vectors 

Some studies in low-dimensional dynamical systems have shown that all perturbations, 

including all singular vectors, evolve towards the leading Lyapunov vectors, which is the 

attractor in the atmosphere dynamic system (e.g., Trevisan and Legnani 1995, Kalnay 

2003). 

 

The global Lyapunov exponents describe the long-term average exponential rate of 

stretching (or contracting) in the attractor: 



 19 

                     

€ 

λ
i
= lim

s→•

1

s
ln[σ

i
(t0 + s)]                                                                 (24) 

where 

€ 

σ
i
(t
0

+ s) are the singular values of the linear operator at a finite interval s. 

 

While dealing with atmospheric predictions, we are more interested in the local stability 

properties of perturbations at a given time and space.   The leading local Lyapunov vector 
(LLV) can be estimated at time t: 

                     

€ 

l1(t) = lim
s→•

L(t − s,t)y(t − s)                                                           (25) 

And the leading local Lyapunov exponent can be obtained from the rate of change of its 

norm over a finite period 

€ 

τ : 

                     

€ 

ll1 ≈ 1
τ
ln

l1(t + τ)
l1(t)

 

 
 

 

 
                                                                      (26) 

 

In general, there are three differences between SVs and LLVs: 1) SVs depends on the 

definition of the norm, but LLVs are independent, so LLVs are a fundamental 

characteristic of dynamic systems; 2) SVs grow much faster than the leading LLVs; 3) 

SVs are initially off the attractor, but the first few LLVs of low-dimension dynamic 

systems can span the attractor (e.g., Kalnay 2003). 

 

5.  Singular vectors for ensemble forecasting 
 

a.  Motivation of ensemble forecasting based on the SV method 

The fundamental goal of ensemble forecasting is to produce a forecast PDF of possible 

future states of the atmosphere from which the true state is consistently a random sample.   

One way to build an ensemble prediction system (EPS) is by running a NWP model 

starting from an analysis PDF (namely, initial perturbations).  To obtain a good estimate 

of the forecast PDF, the analysis PDF should represent our uncertainty in the 
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atmosphere’s true state and its attractor.  However in practice, the initial PDF is only 

poorly known.  Theoretically, for an ideal ensemble with an infinite number of members, 

it can be proved that truth must show up in the bounds defined by approximate forecast 

PDF.  But, under the limit of computational cost, it is impossible to build an ensemble 

forecasting system with a huge number of members at present. 

 

The scientists at ECWMF followed the idea of Lorenz (1965), who proposed that 

“optimal perturbations” that grow the fastest in the short-range are revealed by the largest 

eigenvalues of the eigenvectors of a symmetric matrix, to create initial perturbations for 

their EPS by using the SVs approach.  The most important benefit resulting from this 

method is that it allows us to develop a reasonable ensemble based on only limited 

members since choosing the fastest growing modes should ensure that the true evolution 

of the atmosphere is consistently portrayed.  In addition to these, there are three reasons 

why the ECMWF medium-range EPS exploits SV perturbations: 

i) The sensitivity of day-2 forecast error to perturbations in the initial state 

projects well into the space of dominant SVs (Rabier et al. 1996). 

ii) The evolved SVs are lying in the direction the largest eigenvectors of the 

forecast-error covariance matrix if the metric is an accurate reflection of the 

analysis-error covariance matrix (Ehrendorfer and Tribbia 1997, hereafter 

referred to as ET).  It is found that less than 15% of the total number of SVs 

is needed to recover more than 95% of the total forecast-error variance in ET. 

iii) SV perturbations may provide a relatively efficient means of sampling the 

forecast error PDF in the weakly nonlinear range (e.g., Gelaro et al. 1998). 

 

b. Medium-range ensemble prediction system 

So far, there have been three spectral models running operationally at ECMWF (Buizza 

et al. 1998): 1) T42L31; 2) Tl159L31; and 3) T213L31.  By using the tangent linear 

model for the T42L31 model over a 48-hour optimization interval, the 25 twin pair SV 
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perturbations that form the ECMWF’s SV ensemble are obtained as follows [see further 

details in Buizza et al. (1998) and Molteni et al. (1996)]. 

 

First, 25 SVs (only for the Northern Hemisphere), Vj ; j=1, 25, are calculated over the 

Northern Hemisphere by either the Lanczos algorithm or the Jacobi-Davidson algorithm, 

depending on which initial norm, total energy, or the Hessian of the 3-dimensional 

variational data assimilation (3DVAR) objective function, is selected. The projection 

operator P is performed so that only perturbations north of 300  (or south of 300 for 

Southern Hemisphere) are included in the EPS.  The first four SVs are always selected.  

Each subsequent SV (from the 5th onwards) is selected only if more than half of its total 

energy is lying outside the localized regions of the SVs already chosen. 

 

Second, once SVs have been selected, an orthogonal rotation in phase space and re-

scaling are applied to generate final perturbations for ensemble forecasts.  Rotation 

processing can ensure that the resulting perturbations Pj have the same globally-averaged 

energy as the ‘original’ singular vectors, but smaller local maxima and more uniform 

spatial distribution.  There are two reasons for re-scaling: 1) make initial amplitudes of 

perturbations similar to analysis-error estimates; and 2) limit the ensemble standard 

deviation to be comparable to the estimated error of the ensemble mean.  In practice, a 

scaling factor Rn is chosen by experimentation (e.g., Rn=0.6) and then the constants 

€ 

α jk  

are chosen such that 

€ 

Pj = k=1
25∑ α jkvk  and 

€ 

Pj ≤ Rn ae  (where 

€ 

v
k
 and 

€ 

a
e
 represent SVs 

and the approximated analysis error, respectively). 

 

Third, perturbations are added to and subtracted from the control initial conditions, the 

T42L31 analysis value, to create 50 perturbed initial conditions.   Following the steps 

above, a second set of perturbations are obtained for the Southern Hemisphere. 
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Finally, after interpolating from T42L31 to Tl159L31 resolution, the ensemble forecast is 

run up to 10 days with the nonlinear model.  In the meantime, a control forecast is 

performed at either T42L31 (low-resolution) or T213L31 (high-resolution). 

 

With all these advantages of the SV approach in the EPS, there are three notable 

problems.  First, it is computationally expensive to find the optimal perturbations even 

thought we just pick up a few leading SVs.  ECMWF has to run the tangent linear model 

and its adjoint about three times the number of SVs required.  For this reason, the 

computation of the dominant SVs is done with a lower resolution than the operational 

model.  Second, this method is applied to maximize the linear error growth for a 48-hour 

optimization interval.  Although these SVs represent directions that have grown optimally 

in the last 48 hours, it is not guaranteed that the optimal perturbations at 48 hours will 

continue to be the fastest growing modes into the medium range (10 days).  Third, SVs 

are designed to sample the extremes of the analysis PDF instead of providing a purely 

random sampling.  In fact, not all the analysis errors project onto growing modes, so the 

sampling is limited.  This may be one of the reasons why the ensemble spread is lower 

than desired. 

 

c.  Short-range to early-medium range ensemble prediction system 

Ensemble prediction systems, which are optimized for the large-scale flow in the medium 

range, work fairly well at both ECMWF and NCEP (breeding method).  In the short-

range, the scale and weather parameters of interest are less predictable so their errors may 

saturate too quickly for an ensemble to be of use.  Also the influence of model 

uncertainty is more significant in the short-range than in the medium-range.  If simply 

using the medium-range EPS for a short-range forecast, such systems might not be 

optimal for less predictable weather parameters in that range.  Currently, short-range 

ensemble forecast (SREF) is given quite some attention and the value of SREF remains 

an open question.  There are a few ways to design a SREF, such as the multi-regional 
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model (e.g., Du and Tracton 2001), multi-analysis method, the poor man’s technique (e.g., 

Atger 1999), the analysis-centroid mirroring system (Eckel 2003), the targeted ensemble 

prediction system (TEPS) (Hersbach et al. 2003).  Here I introduce only TEPS since it is 

the only one to be designed with SVs. 

 

The goal of the TEPS, similar to the EPS for the medium-range at ECMWF, is to address 

the predictability of short-range to early medium-range (up to day 5) weather parameters 

(Hersbach et al. 2000) by using targeted singular vectors (TSVs) to generate initial 

perturbations.  The total energy is still used to define the initial norm, but this time the 

projection operator P is designed to only obtain perturbations on a specific area (e.g., the 

European domain), instead of the entire extratropics.  The smaller area makes it possible 

to increase the number of directions that is associated with the weather parameters of 

interest without increasing the number of ensemble members.  Hersbach et al (2003) 

compared the TSVs to the SVs of the medium-range EPS and found that the first five 

leading TSVs were very well represented by a set of 25 SVs of the medium-range EPS 

while the slower growing TSVs were poorly described.  However these slower growing 

TSVs do contain a substantial part of the “explained variance” of the 48 h forecast error 

above the interest area.  For the short-range (3 days), an optimization time of 12 h was 

used instead of 48 h.  The SVs obtained for a 12-hour optimization interval were argued 

to lead to acceptable perturbations even if they might not present the optimal solution.  

Also, compared to medium-range EPS, ensemble spread calculated from this short-range 

ensemble system was increased, having a beneficial effect on statistical properties.  

Although the SV approach has shown some good results in case studies of the short-range 

ensemble forecast, more research will be needed to address existing problems. 

 

6.  Summary 
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Based on the discussion above, we believe that SVs are a powerful mathematical tool that 

has been successfully applied to many fields, including the atmospheric-predictability 

problem.   The dominant singular vectors describe the most rapidly growing structures 

with respect to a given metric (norm) over a certain optimization interval in a tangent 

linear sense (Gelaro et al. 1998).  The noticeable characteristic is that SVs are dependent 

on the norm, projection operator and optimization interval.   The total energy is the 

appropriate metric for the predictability since it may be a reasonable first-order estimate 

of the analysis-error covariance metric.  For a medium-range ensemble forecast, the 

projection operator is designed to cover perturbations on the entire extratropics.  

However, uncertainties in a small area, which are obtained by the use of a projection 

operator, show a positive effect on a SREF.  Also, based on previous studies, a short 

optimization interval has been thought to be a better selection than a longer interval when 

it comes to issues in a SREF (e.g., Hersbach et al. 2003).  The nonnormality of SVs 

allows for the possibility of finite-time growth faster than exponential. 

 

The conclusion that SVs represent the directions of most rapid error growth provides the 

main rationale for their use in the application of ensemble numerical weather prediction. 
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Figure 1:  A schematic illustration of the growth of an isopleth of the forecast error           
probability distribution function, from (a)  initial phase,to (b) linear growth phase,                              
to (c) nonlinear growth phase to (d) loss of predictability (from ECMWF website 
http://www.ecmwf.int/research/ifsdocs_old/ENSEMBLE/index.html) 
 


