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Chapter 1

Introduction

Cloud-aerosol interactions are an area of considerable uncertainty in our current

understanding of climate change. Multiple competing processes influence the ex-

pected net effect of changes in aerosol concentration on cloud properties. Gener-

ally, an increase in atmospheric aerosols might be expected to have a cooling effect

as they tend to produce brighter, more reflective clouds (Chen et al. [7]). Clouds

modified by anthropogenic aerosols also tend to be at a low enough altitude such

that they don’t have a thermal greenhouse effect to counteract the increased cooling

due to the reflectivity change. On the other hand, increasing aerosols can also ac-

celerate cloud breakup by suppressing droplet sedimentation, leading to enhanced

evaporative cooling, and enhanced mixing of inversion air resulting in a transi-

tion to broken cloud (Bretherton et al. [5], Ackerman et al. [1]). This implies that

the warming effect of shorter cloud lifespans may dominate over the cooling ef-

fect. The uncertainty was large enough to warrant both changing and removing

sections pertaining to cloud-aerosol interactions from several Intergovernmental

Panel on Climate Change reports (Boucher et al. [3]). It is clearly important to

gather as many real-world observations of this process as possible to reduce these

unknowns. One possible anthropogenic example of these observations are ship ex-

haust tracks. We propose sampling en masse from these ocean-based clouds as we

can confidently state they are filled with cloud-aerosol interactions. These tracks

are a ”natural experiment” of sorts that cannot be disregarded.

The first step in sampling from these structures is to locate them efficiently
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and robustly. Existing studies focused on the detection of ship exhaust tracks have

already shown considerable promise. An excellent example being the work done

by (Yuan et al. [24]) where a convolutional neural network is trained from 1,500

examples to find ship tracks. The results from this study were impressive but the

number of examples their model was trained on highlights one of the primary dis-

advantages to using machine learning: an expansive amount of data is required to

achieve a non-trivial result. A considerable amount of effort to manually gather

and classify all of this data would be necessary.

The purpose of this study was to create an algorithm for finding ship track ex-

amples that does not require large datasets or training. This would be achieved by

exploiting the persistence of a ship track’s linear structure through time relative to

its more noisy surroundings. Our dataset’s domain was the ocean off the coast of

California during the spring, summer, and fall months. This area has heavy ship

traffic and is known to produce the ideal atmospheric conditions needed for the de-

velopment of cloud droplets from the ship aerosols. Specifically, 2019 was chosen

since the Californian wildfire season was less extreme and less smoke would be

expected to block the satellite’s line of sight to low level clouds. See fig. 1.1 for an

example of a ship track heavy event near California.
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Figure 1.1: Visible satellite view of ship exhaust tracks off the coast of
California on Apr. 24, 2019
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Chapter 2

Methodology

Cloud droplets created from ship exhaust aerosols have been shown to display

identifiable signatures in remote sensing data (Szczodrak et al. [21]). From testing

we found that these signatures were not robust enough to be the exclusive step

in ship exhaust track masking. Many other pixels in the scene were erroneously

selected and some ship tracks were not detected at all. Additional steps needed to

be taken in order to have a ship track masking algorithm accurate enough for use in

machine learning training, validation, and testing datasets. This study explored the

use of some modern computer vision techniques on the visual structures associated

with ship tracks in an attempt to further differentiate between ship track and non-

ship track pixels within these signatures. The following sections will be presented

in order of their positions inside our algorithm.

2.1 Data Selection and Pre-Processing
The Geostationary Operational Environmental Satellite 17 Advanced Baseline Im-

ager (GOES-17 ABI) was selected as the primary data source for this study. This

choice was made because geostationary satellites are ideal for algorithms that re-

quire multiple images in temporal succession. The National Oceanic and Atmo-

spheric Administration (NOAA) has also made many of the GOES datasets avail-

able on modern cloud storage services such as Google Cloud and Amazon Web

Services (AWS) which made the data mining process relatively effortless. The final
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version of the study’s software required the following raw input data at each time

step (each are full disk files, defined by the prefixes ABI-XX-XXXF below):

1. ABI channel 2 radiances with 0.59–0.69 µm wavelengths (ABI-L1b-RadF)

2. ABI channel 7 radiances with 3.80–4.00 µm wavelengths (ABI-L1b-RadF)

3. ABI channel 14 radiances with 10.8–11.6 µm wavelengths (ABI-L1b-RadF)

4. ABI level 2 cloud particle size (ABI-L2-CPSF)

5. ABI level 2 cloud optical depth (ABI-L2-CODF)

Additionally, brightness temperature difference (BTD) was produced from the

channel 7 (3.80–4.00 µm) and 14 (10.8–11.6 µm) radiances to be used as the pri-

mary input for the computer vision algorithms. Brightness temperature refers to

the temperature that a blackbody would have to be at to produce the observed radi-

ance. BTD was chosen because it defines the structure and boundaries of the ship

tracks particularly clearly (Yuan et al. [24]). BTD was generated from the following

equations (Schmit et al. [20], Yuan et al. [24]):

BTD = Tch7−Tch14

T =

fk2
ln( fk1

L
λ
+1)
−bc1

bc2

Where Lλ is the desired channel’s radiance and fk1, fk2, bc1, bc2 are constants

determined by the wavelength of the chosen channel and universal constants used

in Planck’s law. See table 8 in Schmit et al. [20].

In order to properly exploit the chosen computer vision algorithms, several

pre-processing filters were used to prepare the data. Portions of the data that may

have caused unnecessary noise or that were not physically associated with ship

tracks were removed. The first filter removed any data situated over land. This

was achieved by checking to see if each pixel fell inside of the coastline polygon

shapefile distributed by OpenStreetMaps (OpenStreetMap contributors [17]). The

second filter removed any high-cloud data as these clouds are not usually asso-

ciated with ship tracks. A data point is classified as a high-altitude cloud if its
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channel 14 (10.8–11.6 µm) brightness temperature is below 5◦C. This was consid-

ered cold enough to represent high-altitude clouds at this latitude during the spring

and summer months that this study covers.

The final filter removed open ocean pixels as these are clearly not associated

with ship tracks and would often introduce a lot of noise. A GOES-17 ABI open

ocean mask is supplied by NOAA but we decided that a filter could be made from

the datasets already in use. The development process for this filter was more elab-

orate than the others and several methods were tested before reaching an optimal

solution. The first method that was tested was more traditional. This approach

involved separately applying a local mean filter and a standard deviation filter to

the channel 14 (10.8–11.6 µm) brightness temperature (with various kernel sizes).

Next, the pixels that have both local mean above a predefined threshold and local

standard deviation below a predefined threshold is considered open ocean (Coak-

ley Jr. and Bretherton [8]). When a scatter plot is generated with the local mean

data on the x-axis and the local standard deviation data on the y-axis, the struc-

ture that is observed is often compared to an ”arch”, where the base of the right

”column” corresponds to data points over open ocean (Coakley Jr. and Bretherton

[8]). The two aforementioned thresholds were designed to select the data on this

right column’s base. This method had shown promise during some of the early

test cases however, we concluded that this method was not robust enough to work

in all scenarios. Either universal thresholds could not be determined or, in certain

scenes, the expected arch structure did not appear at all.

Clearly, a more robust method was required for reliable open ocean filtering.

What was next investigated was using channel 2 (0.59–0.69 µm) radiances and

channel 14 (10.8–11.6 µm) brightness temperature with a clustering technique.

A density highlighting hexbin plot was produced for these two dimensions and a

dense number of pixels was observed at the bottom right (see fig. 2.1). This was

observed to be a signature directly associated with pixels over open ocean. The

density of the signature implied that a density-based clustering algorithm would

robustly and accurately label the correct pixels. The chosen method was the popu-

lar density-based spatial clustering of applications with noise (DBSCAN) algorithm.

The method detects clusters of arbitrary shape using the density as a measure of

likeness between points (Ester et al. [9]). The primary drawbacks to DBSCAN are
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that it is more computationally expensive than KMeans and it is non-inductive (it

cannot predict the labels of new data) (Pedregosa et al. [18]). We found that it

would take upwards of 1 hour to run a single scene, which was far greater than the

few minutes of runtime per scene that would be acceptable. The most direct solu-

tion to the runtime issue was to train the model on a smaller subset of the pixels

but the non-inductive property of DBSCAN implied that this could not be done. The

solution was to merge DBSCAN with a classification algorithm through a method

outlined in Scikit Learn’s API documentation (Pedregosa et al. [18]). The cluster-

ing/classifying algorithm combination could work in a pseudo-inductive fashion.

10,000 pixels were IID sampled (the samples were independent and identically dis-

tributed implying each sample was chosen randomly and had no co-dependence)

from the image and used to fit DBSCAN and then a decision tree was used as a

classifier for predicting the label of the other pixels. This was an adequate solution

to the runtime issue as it brought down the average runtime per scene to approxi-

mately 2 minutes on a 2020 MacBook Pro.
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Figure 2.1: Top: A hexbin plot from Apr.24th 2019 showing the clusters
associated with channel 2 (0.59–0.69 µm) radiance and the brightness

temperature difference. Bottom: A scatterplot of the same event where the
results of the clustering algorithm are highlighted in red.

The clusters found seemed to qualitatively match the cluster we expected to

observe (see fig. 2.1). Using the GOES-17 open ocean mask as a true label, the
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error of the clustering process is described below in fig. 2.2. The error is within

acceptable bounds, but it should be noted it may be possible to improve it further by

additional hyperparameter tuning. Also note that the GOES mask consistently, but

randomly mislabels large patches of pixels over obvious open ocean areas during

each frame. These patches change their frequency and position between each frame

but are certainly widespread enough that the error was considerably worsened. The

actual performance is better than what is displayed. These patches are nonphysical

and should this process be studied further, a better set of true labels will have to be

considered. This process’s potential was not exhaustively explored as this was not

the main objective of this study.

Figure 2.2: Confusion matrix of the clustering algorithm generated from 174
scenes over 4 independent days.

2.2 Edge Detection
Data processing begins with the application of an edge detection filter. This filter

finds adjacent pixels with a difference in magnitude over a user defined threshold.

It then creates a line though these adjacent points referred to as an ”edge”. To

find an edge detection filter that reliably highlighted ship tracks, while generating

as little edges as possible for other artifacts such as clouds or dataset noise was

critical.

Firstly, the Sobel edge detection filter was tested. This is a common filter used

in many photo processing applications. An example of it being used to assist with
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face recognition was made by (Thakur [22]). We found this filter to be overly

sensitive, but reducing the edge threshold would just cause the filter to miss less

well-defined ship tracks. Several ridge detection filters were also tested. Ridge

detection differs from edge detection in that it finds the overall ship track structure

rather than just the edges. Ridge detection is often used in the identification of

human anatomy features such as neurites, tubes, vessels, and wrinkles (Frangi et al.

[10], Meijering et al. [14], Ng et al. [16], Sato et al. [19]). Four methods were

tested: the Meijering filter, Sato filter, Frangi filter, and Hessian filter. We observed

that all four of these ridge detection methods could not resolve small diameter ship

tracks. These methods also returned structures that were not adequate for input in

later steps of our pipeline. With these issues in mind, ridge detection methods were

subsequently discarded.

The method that had qualitatively delivered the best results was the Canny edge

detection filter. Edges are found in the Canny edge detection filter by first calculat-

ing the gradient of the pixels. Areas with the largest local gradient magnitude are

considered edges. The less well-defined edges (that likely originated from noise)

are removed using a hysteresis threshold set by user defined parameters (that are

discussed below). It is very similar in output to the Sobel edge detection filter,

with the exception that it has a built in Gaussian filter that is applied before finding

edges. The Gaussian filter became a crucial part of our process as it ensured ship

tracks became more well-defined while greatly reducing background noise. With-

out some degree of Gaussian smoothing it is unlikely an edge detection algorithm

could find any tracks. The parameter σ controls the width of the Gaussian function

(a higher σ indicates a greater amount of smoothing), while low and high threshold

parameters determine the amount of edges detected. The low threshold determines

how long an edge may be, while the high threshold determines if an edge exists

at a particular point. After initial tests, we determined qualitatively that σ = 2.5,

low threshold = 0, and high threshold = 0.8 would produce the optimal results.

See fig. 2.3 for an example of this filter.
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2.3 Probabilistic Hough Transform
The edges were created to identify the outline of the ship tracks, but it is impos-

sible to exclusively highlight their structures without highlighting at least some of

the background scene. The next step was to single out the tracks from the back-

ground. This was achieved by exploiting the linear structure associated with tracks.

(Aircraft contrails would not be detected because the high cloud filter mentioned in

section 2.1 removed them from the data.) To detect and flag straight lines, the prob-

abilistic Hough transform algorithm was used. This algorithm detects straight lines

using the Hesse normal form (r = xcos(θ)+ysin(θ)) to find the distance between

each line point and the origin (r) along with the line’s angle (θ ) (Galamhos et al.

[11]). It has three parameters: a threshold, a max line gap, and a min line length.

Respectively these limit the number of lines detected, set the maximum allowed

number of empty pixels between each line pixel, and set the minimum length for a

line to be considered valid. This detected most tracks in a particular frame but also

still detected a few erroneous lines within the background (see fig. 2.3).
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Figure 2.3: Top: The brightness temperature difference on Apr.24th 2019
with the Californian coast highlighted in blue for reference. Darker colors
indicate more negative BTD while brighter colors indicate more positive.

Bottom: The Canny edge detection of the same event with the probabilistic
Hough transform detecting straight lines indicated in green.

2.4 Discriminative Correlation Filter Tracking
We observed that the noisy edges associated with the background would not main-

tain their structure through the passage of time as well as ship tracks. This inte-

gral observation would become the inspiration for the primary component of this

study’s algorithm. This component being the use of an object tracking filter that

would take into account the object’s temporal state. The lines supplied by the

probabilistic Hough transform were then fed into the filter and only those lines

with surrounding pixels that remain mostly unchanged during a certain amount of
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time are deemed associated with true ship tracks.

Kalman filters are among the most popular and commonly used object tracking

filters (Chen et al. [6]). They would seem ideal for our purposes as they contain

a component that directly describes the error associated with an observations’ de-

viation through time. However, we decided that similar, but more modern object

tracking algorithms would be used. This is due to their widespread use in modern

computer vision applications (Chen et al. [6]) and their public distribution through

python packages such as OpenCV. Several of the OpenCV methods were tested.

First the Minimum Output Sum of Squared Error (MOSSE) tracker was used. It

was a very quick and efficient algorithm but it failed to track almost any of the

ship tracks (Bolme et al. [2], Bradski [4]). It was quickly discarded and replaced

with the Kernelized Correlation Filter (KCF) Tracker. This tracker performed more

slowly, but with much more accuracy. Unfortunately, it often could not track the

ship tracks beyond 3-5 frames (Henriques et al. [12], Bradski [4]). Thirdly, we

experimented with the Discriminative Correlation Filter with Channel and Spatial

Reliability (or CSRT in OpenCV vernacular) (Lukezic et al. [13], Bradski [4]). The

spatial reliability here refers to the model constantly updating the tracked segment

of the scene as it moves through space. This filter tends to run slower than the other

object trackers distributed by OpenCV, and is often considered too computationally

expensive for intensive computer vision applications such as tracking an object on

a 60 frames per second video stream. For our applications, this limitation was not

an issue as we did not require quick results for each frame and a single day’s worth

of data rarely exceeded 50 total frames. This filter performed far better than the

alternatives and was often able to track structures for the duration of a day. This

filter clearly became the ideal choice for our algorithm.

A system for managing all of the objects being tracked by the CSRT tracker

had to be devised. This was essential for determining if a particular object would

be considered a true ship track. It was also important for determining when and

if a ship track dissipated or moved off the scene. OpenCV has a MultiTracker

class that is meant to perform this task (Bradski [4]), but it was lacking several key

functions. The primary issue being that it could not remove an object once it had

started to be tracked. This was clearly an issue as a ship track could leave the scene,

but the tracking algorithm may still try to find it elsewhere, potentially producing
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a false positive. The OpenCV class also could not be easily modified to support

the final thresholds we wanted to enforce (listed below). This led us to create our

own version of a CSRT MultiTracker class. It supported the removal of any tracked

object at any time. An object was removed for any of the following reasons:

1. The CSRT tracker could no longer detect the object in the scene.

2. The object was not detected for at least 3 consecutive frames in a row (or 30

minutes).

3. The object moved too quickly to be an average ship track (in excess of ap-

proximately 1 km/min).

4. The object was not detected at least twice during its existence by the proba-

bilistic Hough transform.

Items 2-4 are of greatest importance as these are the thresholds that exploit the

temporal aspect of the tracking algorithm. If none of these are triggered the object

is formally considered a ship track and can next be labelled as such.
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Figure 2.4: Top: The brightness temperature difference on Aug.7th 2019
before the CSRT algorithm is run. Note the ship tracks in the bottom right of
the image. Bottom: CSRT algorithm highlighting several sections of those

tracks with green boxes.

2.5 Ship Track Pixel Labelling
Each object tracked in the previous section is bounded by a rectangular box (see

fig. 2.4). The pixels within these boxes is what the tracking algorithm searches

for during each frame. The tracking algorithm itself cannot recognize which pixels

within this box belong to the ship tracks and which do not. An additional step was

required to perform this final image segmentation.

As with the other sections, several methods were considered and tested before a

procedure was decided upon. Firstly, functions using channel 2 (0.59–0.69 µm) and

channel 6 (2.225–2.275 µm) reflectances identified in the GOES ABI documentation
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and by others (Walther et al. [23], Nakajima and King [15]) were experimented

with (see fig. 2.5). Each of these functions highlighted a relationship between

channel 2 (0.59–0.69 µm) reflectances, channel 6 (2.225–2.275 µm) reflectances,

and cloud optical depth for a particular cloud droplet size. Where cloud optical

depth and cloud particle size are derived following (Szczodrak et al. [21]):

τ = Qext

∫ H

0

[∫
∞

0
n(z,r)πr2dr

]
dz

(1)

reff(z) =
∫

∞

0 n(z,r)r3dr∫
∞

0 n(z,r)r2dr

Where r is the droplet radius in meters, n(z,r)dr is the number concentration of

drops at height z with radii between r and r+dr, and Qext is the scattering extinc-

tion efficiency (Qext = 2 for channel 2’s 0.6 µm photons). The scattering of channel

2 photons is not sensitive to droplet size, but for channel 6 photons we expect to

see reflectively vary strongly with droplet size. Since we expect ship tracks to

be associated with smaller diameter cloud droplets relative to their surroundings,

we theorized that some parts of a scene would resemble the GOES ABI graph (fig.
2.5) in the channel 2 (0.59–0.69 µm) and channel 6 (2.225–2.275 µm) reflectance

space. The ship tracks would have a curve slightly below other curves represent-

ing their surroundings. Unfortunately, in practice no obvious curve like structures

with vertical spacing were identified. This was primarily because our study fo-

cused on clouds with relatively low optical depth. As shown in fig. 2.5, particle

size is strongly differentiated by the channel 6 (2.225–2.275 µm) reflectance when

the optical depth is large, but the relationship is weaker when the optical depth is

small. The thinness of the cloud layers resulted in the sampled data points forming

an overly noisy, structureless shape.

This issue inspired the next method, which was to use a clustering algorithm.

We theorized that perhaps a clustering algorithm would be able to piece apart the

noise and find a ship track signal. Both KMeans and the inductive combined

DBSCAN/decision tree algorithm from section 2.1 were run on several combina-

tions of normalized variables in an attempt to find a signal. Firstly, channel 2
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(0.59–0.69 µm) and channel 6 (2.225–2.275 µm) reflectances were examined. This

was to determine if there was a ship track cluster concealed inside of all the noise

that was not visible with inspection. No satisfactory results were produced, so

additional options were explored. At the conclusion of these tests 7 different vari-

ables that were theorized to accentuate ship tracks were tested in varying combi-

nations. In no particular order they were: channel 2 (0.59–0.69 µm) reflectance,

channel 6 (2.225–2.275 µm) reflectance, our BTD, cloud particle size, cloud op-

tical depth, channel 14 (10.8–11.6 µm) radiance, and channel 7 (3.80–4.00 µm)

radiance. We observed that no combination produced robust results with either

KMeans or DBSCAN. While some ship tracks would be successfully labelled dur-

ing these tests, many would remain unlabeled and a substantial amount of back-

ground cloud would be erroneously labelled. Clearly, additional methods would

still need to be explored.
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Figure 2.5: Top: Graphical depiction of the relationships between channel 2
(0.59–0.69 µm) reflectances, channel 6 (2.225–2.275 µm) reflectances, cloud

droplet sizes, and cloud optical depths given in NOAA’s manual (Walther
et al. [23]). The optical depths are the values above the lines while the

droplet sizes are to the right of each line. Bottom: The observed relationship
between optical depth and droplet size in a polluted cloud given by

Szczodrak et al. [21]. The contour lines give τ and reff values for satellite
pixels. The starred points are in situ aircraft data.
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The final method explored was similar in concept to the (Walther et al. [23],

Nakajima and King [15]) method. We decided that the identification of a traditional

function relating two dimensions was the best way to label the tracks with accuracy

acceptable enough for our purposes. NOAA produces derived data products from

the raw radiances. Two of these products are the cloud optical depth and the cloud

particle size. They are inferred using a lookup table derived from the radiative

transfer calculations shown in fig. 2.5. In a separate study Szczodrak et al. [21]

have identified a function relating cloud optical depth to cloud particle size through

satellite and aircraft observations of clouds. Specifically, if the number of droplets

is assumed to be constant, they showed that (1) can be rewritten as a power law

relationship between cloud optical depth and cloud particle size:

τ = a−1
1 N2

satr
5
eff

Where τ is the optical depth, a1 is a constant based on the scattering extinction and

the liquid water lapse rate set at 2× 10−3gm−3m−1, Nsat is related to the number

of droplets in the cloud, and reff is the effective radius of the droplets at cloud top.

Refer to Szczodrak et al. [21] appendix A for details of its derivation. When cloud

optical depth and cloud particle size are plotted in a loglog scatterplot, this can be

visualized as a linear relationship (a line). Flight 10 in fig. 2.5 (Szczodrak et al.

[21]) gives an example of this relationship. This flight was through clouds polluted

with aerosols which is an environment similar to what would be expected within

ship track clouds.

After some trial and error, one or more straight line structures were observed

in most scenes we examined (see fig. 2.6). A certain amount of pixels above and

below this line were labeled as ship tracks, producing a rectangular shape. This

algorithm was found to produce the least amount of erroneously labelled pixels in

the immediate vicinity around the ship tracks and was therefore the best choice for

labeling within the CSRT boxes. Unfortunately, we found that the exact position

and slope of these lines varied between each scene. This is due to the number of

particles differing between each track in a scene which broke our assumption for

certain tracks. This implied the method was not universally robust and could not be

used for consistent detection. Alternative methods for future studies are discussed
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in the results and conclusions section.

Figure 2.6: Top: The loglog hexbin plot showing the overall structure of the
scene on Aug.7th 2019. The green line indicates the chosen function.

Bottom: A loglog scatterplot of the same scene. The green line indicates the
chosen function with its surrounding rectangle highlighted by the red points.

These red-labeled pixels are primarily associated with ship tracks.
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Chapter 3

Results and Conclusions

Several scenes with completed output are shown below in fig. 3.1. Our algorithm

seems to correctly label pixels that are clearly part of ship tracks, but it fails to find

all tracks. It also tends to consistently miss the ”tips” of the tracks where the clouds

taper out. The objective of this study was to create an algorithm that could reliably

return pixels that we confidently believed were from ship tracks. Our output seems

to indicate that it achieves this, but it does not return all ship track pixels in a

scene. It is not immediately clear if the pixels that are returned are associated with

a certain amount of pollution (and therefore a stronger signal) or if the algorithm

requires a certain width of track for a successful hit. The algorithm also tended to

not perform very well in scenes with a large number of tracks. This was because

the constant particle radius assumption required for the section 2.5 step was far

more likely to break down with a greater number of tracks. A further issue that

limits the number and type of ship tracks returned is the assumption made for the

Hough transform step. That is the assumption that ship tracks are straight cloud

structures with turns only at sharp angles. This assumption does hold for most

tracks since most ships do not move in massive curving turns or circles. The issue

arises when certain environmental conditions cause the wind to advect the track

with differing velocities across its length creating a curved line. These large curves

cause the track to become completely undetectable by our method.
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Figure 3.1: Two examples of completed output displayed on BTD images.
The red highlighting represents the pixels returned as ship exhaust tracks.

The pixels appear to be over fairly well defined tracks. Top: Aug.7th scene.
Bottom: Jul.3rd scene.

While the results of this study appear promising, there are still several more

steps that must be taken in order to ensure this method would be ready for op-

erational use. It is clear that a greater level of error and hit rate quantification is

required to guarantee the reliably of the results. At a high level we are comfortable

with the method missing some of the aforementioned cases, but we must make sure

that what is detected originates from a ship track with very little probability of er-

ror. A false positive rate is likely an ideal measure for this, but it is not clear what

population should be counted. A population of raw labeled and non-labeled pixels

were considered, but this results in error values that do not offer insight into the

actual behaviour of the model. For example, a single pixel immediately adjacent to
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a ship track might have been erroneously labelled, but practically this should not

contribute to the false positive rate. Instead, an objective for a future study would

be to create an error measuring system where the population samples are the ship

tracks themselves. Each ship track that is at least partially returned by the model

would be counted as a single true positive sample and any entity that is erroneously

returned outside of a ship track would be counted as a single false positive sample.

This would make each counted false positive sample a very obvious representation

of the error and would emphasize the significance of getting anything above a zero.

In addition to using this system of error measurement on observations, it could be

used with software that simulates scenes filled with ship tracks. This would ensure

a controlled environment for stress testing our algorithm. All of these ideas were

considered and would have been explored fully given less of a time constraint.

The most significant issue that would have to be overcome for this method

to be robust enough for operational use is the limitations imposed by the manual

work required in the section 2.5 step. This step must be replaced by a method that

robustly works across all possible scenes. An example of this is a fully automated

method for finding the relationship between cloud optical depth and cloud particle

size. As mentioned in the section, some clustering methods were already tested

with little success. A more likely choice will be the use of an entirely different

process on different datasets, but that alone could be a separate study. However,

if a method is found and the error is quantified, this model could have uses in

operations or further climate studies.

Many future studies could originate from this project as there are still paths

left unexplored. For example, one of the primary benefits of using BTD is that it

can still highlight ship tracks during the night. It is also possible that the tracks

may be more well defined at night as the BTD may become larger for their pixels

since the emitted photons would not be partially masked by reflected sunlight. Our

algorithm is restricted to the daytime due to the open ocean masking so future

work could be focused on transitioning the algorithm over to nighttime. Another

idea was to transition the used datasets to anomaly variables rather than traditional

absolute variables. It is possible this will make the difference between the ship

tracks and the background noise even greater for the CSRT step and improve the

true positive rate. Another limitation with the data is that the temporal component

23



of the algorithm forces it to originate from geostationary satellites which leaves

many high resolution modern datasets unusable. In particular, the high resolution

data from the moderate resolution imaging spectroradiometer (MODIS) sensor on

the Terra and Aqua satellites would have likely proven invaluable and a future study

could be focused on finding a way to use MODIS data in tandem with GOES data.

Overall this method has great potential, but it is hard to precisely judge its

usefulness. We believe the highest priority now is to run many more tests and

quantify its error. Once this is complete, the manual section 2.5 step must be

replaced with something more automated. This algorithm would then be ready

for general use. It is possible it will not return as many ship tracks as the model

employed by (Yuan et al. [24]) which is driven by machine learning, but our method

is able to function without the need for pre-training or massive datasets. Therefore,

this has the potential to become an easier way for many climate scientists to gain

access to cloud-aerosol interaction data. With the great significance of climate

change our objective should always be to provide accessible data to as many people

as possible.
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